skip to main content


Search for: All records

Creators/Authors contains: "Shang, Jingbo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Knowledge graph embeddings (KGE) have been extensively studied to embed large-scale relational data for many real-world applications. Existing methods have long ignored the fact many KGs contain two fundamentally different views: high-level ontology-view concepts and fine-grained instance-view entities. They usually embed all nodes as vectors in one latent space. However, a single geometric representation fails to capture the structural differences between two views and lacks probabilistic semantics towards concepts’ granularity. We propose Concept2Box, a novel approach that jointly embeds the two views of a KG using dual geometric representations. We model concepts with box embeddings, which learn the hierarchy structure and complex relations such as overlap and disjoint among them. Box volumes can be interpreted as concepts’ granularity. Different from concepts, we model entities as vectors. To bridge the gap between concept box embeddings and entity vector embeddings, we propose a novel vector-to-box distance metric and learn both embeddings jointly. Experiments on both the public DBpedia KG and a newly-created industrial KG showed the effectiveness of Concept2Box. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. Real-world applications often involve irregular time series, for which the time intervals between successive observations are non-uniform. Irregularity across multiple features in a multi-variate time series further results in a different subset of features at any given time (i.e., asynchronicity). Existing pre-training schemes for time-series, however, often assume regularity of time series and make no special treatment of irregularity. We argue that such irregularity offers insight about domain property of the data—for example, frequency of hospital visits may signal patient health condition—that can guide representation learning. In this work, we propose PrimeNet to learn a self-supervised representation for irregular multivariate time-series. Specifically, we design a timesensitive contrastive learning and data reconstruction task to pre-train a model. Irregular time-series exhibits considerable variations in sampling density over time. Hence, our triplet generation strategy follows the density of the original data points, preserving its native irregularity. Moreover, the sampling density variation over time makes data reconstruction difficult for different regions. Therefore, we design a data masking technique that always masks a constant time duration to accommodate reconstruction for regions of different sampling density. We learn with these tasks using unlabeled data to build a pre-trained model and fine-tune on a downstream task with limited labeled data, in contrast with existing fully supervised approach for irregular time-series, requiring large amounts of labeled data. Experiment results show that PrimeNet significantly outperforms state-of-the-art methods on naturally irregular and asynchronous data from Healthcare and IoT applications for several downstream tasks, including classification, interpolation, and regression. 
    more » « less
  3. Cyber-physical systems are starting to adopt neural network (NN) models for a variety of smart sensing applications. While several efforts seek better NN architectures for system performance improvement, few attempts have been made to study the deployment of these systems in the field. Proper deployment of these systems is critical to achieving ideal performance, but the current practice is largely empirical via trials and errors, lacking a measure of quality. Sensing quality should reflect the impact on the performance of NN models that drive machine perception tasks. However, traditional approaches either evaluate statistical difference that exists objectively, or model the quality subjectively via human perception. In this work, we propose an efficient sensing quality measure requiring limited data samples using smart voice sensing system as an example. We adopt recent techniques in uncertainty evaluation for NN to estimate audio sensing quality. Intuitively, a deployment at better sensing location should lead to less uncertainty in NN predictions. We design SQEE, Sensing Quality Evaluation at the Edge for NN models, which constructs a model ensemble through Monte-Carlo dropout and estimates posterior total uncertainty via average conditional entropy. We collected data from three indoor environments, with a total of 148 transmitting-receiving (t-r) locations experimented and more than 7,000 examples tested. SQEE achieves the best performance in terms of the top-1 ranking accuracy---whether the measure finds the best spot for deployment, in comparison with other uncertainty strategies. We implemented SQEE on a ReSpeaker to study SQEE's real-world efficacy. Experimental result shows that SQEE can effectively evaluate the data collected from each t-r location pair within 30 seconds and achieve an average top-3 ranking accuracy of over 94%. We further discuss generalization of our framework to other sensing schemes. 
    more » « less
  4. Keyphrase generation aims to summarize long documents with a collection of salient phrases. Deep neural models have demonstrated remarkable success in this task, with the capability of predicting keyphrases that are even absent from a document. However, such abstractiveness is acquired at the expense of a substantial amount of annotated data. In this paper, we present a novel method for keyphrase generation, AutoKeyGen, without the supervision of any annotated doc-keyphrase pairs. Motivated by the observation that an absent keyphrase in a document may appear in other places, in whole or in part, we construct a phrase bank by pooling all phrases extracted from a corpus. With this phrase bank, we assign phrase candidates to new documents by a simple partial matching algorithm, and then we rank these candidates by their relevance to the document from both lexical and semantic perspectives. Moreover, we bootstrap a deep generative model using these top-ranked pseudo keyphrases to produce more absent candidates. Extensive experiments demonstrate that AutoKeyGen outperforms all unsupervised baselines and can even beat a strong supervised method in certain cases. 
    more » « less
  5. We show that label noise exists in adversarial training. Such label noise is due to the mismatch between the true label distribution of adversarial examples and the label inherited from clean examples – the true label distribution is distorted by the adversarial perturbation, but is neglected by the common practice that inherits labels from clean examples. Recognizing label noise sheds insights on the prevalence of robust overfitting in adversarial training, and explains its intriguing dependence on perturbation radius and data quality. Also, our label noise perspective aligns well with our observations of the epoch-wise double descent in adversarial training. Guided by our analyses, we proposed a method to automatically calibrate the label to address the label noise and robust overfitting. Our method achieves consistent performance improvements across various models and datasets without introducing new hyper-parameters or additional tuning. 
    more » « less
  6. Weakly supervised text classification methods typically train a deep neural classifier based on pseudo-labels. The quality of pseudo-labels is crucial to final performance but they are inevitably noisy due to their heuristic nature, so selecting the correct ones has a huge potential for performance boost. One straightforward solution is to select samples based on the softmax probability scores in the neural classifier corresponding to their pseudo-labels. However, we show through our experiments that such solutions are ineffective and unstable due to the erroneously high-confidence predictions from poorly calibrated models. Recent studies on the memorization effects of deep neural models suggest that these models first memorize training samples with clean labels and then those with noisy labels. Inspired by this observation, we propose a novel pseudo-label selection method LOPS that takes learning order of samples into consideration. We hypothesize that the learning order reflects the probability of wrong annotation in terms of ranking, and therefore, propose to select the samples that are learnt earlier. LOPS can be viewed as a strong performance-boost plug-in to most existing weakly-supervised text classification methods, as confirmed in extensive experiments on four real-world datasets. 
    more » « less
  7. Multilingual transformer language models have recently attracted much attention from researchers and are used in cross-lingual transfer learning for many NLP tasks such as text classification and named entity recognition.However, similar methods for transfer learning from monolingual text to code-switched text have not been extensively explored mainly due to the following challenges:(1) Code-switched corpus, unlike monolingual corpus, consists of more than one language and existing methods can’t be applied efficiently,(2) Code-switched corpus is usually made of resource-rich and low-resource languages and upon using multilingual pre-trained language models, the final model might bias towards resource-rich language. In this paper, we focus on code-switched sentiment analysis where we have a labelled resource-rich language dataset and unlabelled code-switched data. We propose a framework that takes the distinction between resource-rich and low-resource language into account.Instead of training on the entire code-switched corpus at once, we create buckets based on the fraction of words in the resource-rich language and progressively train from resource-rich language dominated samples to low-resource language dominated samples. Extensive experiments across multiple language pairs demonstrate that progressive training helps low-resource language dominated samples. 
    more » « less
  8. Existing backdoor defense methods are only effective for limited trigger types. To defend different trigger types at once, we start from the class-irrelevant nature of the poisoning process and propose a novel weakly supervised backdoor defense framework WeDef. Recent advances in weak supervision make it possible to train a reasonably accurate text classifier using only a small number of user-provided, class-indicative seed words. Such seed words shall be considered independent of the triggers. Therefore, a weakly supervised text classifier trained by only the poisoned documents without their labels will likely have no backdoor. Inspired by this observation, in WeDef, we define the reliability of samples based on whether the predictions of the weak classifier agree with their labels in the poisoned training set. We further improve the results through a two-phase sanitization: (1) iteratively refine the weak classifier based on the reliable samples and (2) train a binary poison classifier by distinguishing the most unreliable samples from the most reliable samples. Finally, we train the sanitized model on the samples that the poison classifier predicts as benign. Extensive experiments show that WeDef is effective against popular trigger-based attacks (e.g., words, sentences, and paraphrases), outperforming existing defense methods. 
    more » « less